

Содержание

1 Введение	2
2 Управление	3
2.1 OC Linux	
2.2 OC Windows	5
3 Конфигурирование ПО	7
3.1 Конфигурация DiodeOPCUA	7
3.2 Конфигурация DiodelEC60870-104	9
3.3 Конфигурация DiodeFILE	11
3.4 Конфигурация DiodelEC61850	12
3.5 Конфигурация DiodeEMAIL	
3.6 Конфигурация DiodeSNMP	17
3.7 Конфигурация DiodeModbus	21
3.8 Конфигурации ОРС DA	22
3.9 Конфигурация DiodeFILE	24

1 Введение

Программное обеспечение «ИНКОНТ. Программный комплекс ОПТИ ИК.ДИОД» — это решение, комплектуемое из программных модулей, предназначенное для создания программнотехнических комплексов однонаправленной передачи информации, не содержащей сведений, составляющих государственную тайну, соответствующих требованиям по безопасности информации, установленным в документе «Требования по безопасности информации, устанавливающие уровни доверия к средствам технической защиты информации и средствам обеспечения безопасности информационных технологий» (ФСТЭК России, 2018).

Программное обеспечение призвано обеспечить однонаправленную работу двунаправленных технологических промышленных протоколов связи в условиях невозможности организации обратного канала связи.

Программное обеспечение состоит из двух компонентов (См. Рисунок 1):

1) Клиент – служба, которая выполняет подключение к серверу источнику данных промышленного протокола, проводит циклическое или событийное считывание данных согласно заданной конфигурации, преобразование полученных данных и передачу по однонаправленному интерфейсу.

2) Сервер – служба, которая получает данные от клиента по однонаправленному интерфейсу, преобразовывает полученные данные, публикует данные согласно спецификациям промышленного протокола, обновляет информацию по мере поступления новых данных от клиента за однонаправленным интерфейсом

Рисунок 1 Структура взаимодействия компонентов

2 Управление

2.1 OC Linux

Управление проверочным экземпляром ПО осуществляется средствами ОС Linux, а именно подсистемой инициализации и управления службами systemd.

На примере ниже показано управление программным обеспечением в исполнении DiodeOPCUA. Управление другими службами выполняется аналогично, наименования служб приведены в Таблица 1. Все команды выполняются в терминале ОС.

Остановка:

sudo systemctl stop ddopcuaclient.service

В результате команды остановки ПО в терминал ничего не выводится. Для проверки состояния службы, необходимо выполнить команду для проверки статуса:

sudo systemctl status ddopcuaclient.service

Результат:

```
ddopcuaclient.service - ddOPCUAclient
Loaded: loaded (/etc/systemd/system/ddopcuaclient.service; disabled; vendor preset: enabled)
Active: inactive (dead)
Map 15 10:44:00 rxhost systemd[1]: Stopping ddOPCUAclient...
Map 15 10:44:02 rxhost ddOPCUAclient[17855]: server ufl 1
map 15 10:44:02 rxhost ddOPCUAclient[17855]: server url1 opc.tcp://127.0.0.1:48110
Map 15 10:44:02 rxhost ddOPCUAclient[17855]: server url2
Map 15 10:44:02 rxhost ddOPCUAclient[17855]: subscription id 1
Map 15 10:44:02 rxhost ddOPCUAclient[17855]: subscription interval 500
Map 15 10:44:02 rxhost systemd[1]: ddopcuaclient.service: Killing process 17858 (ddOPCUAclient) with signal SIGKILL.
Map 15 10:44:02 rxhost systemd[1]: ddopcuaclient.service: Succeeded.
Map 15 10:44:02 rxhost systemd[1]: Stopped ddOPCUAclient.
Map 15 10:44:02 rxhost systemd[1]: ddopcuaclient.service: Consumed 1.256s CPU time.
```

Рисунок 2 Вывод команды systemctl status

Запуск:

sudo systemctl start ddopcuaclient.service

В результате команды запуска ПО в терминал ничего не выводится. Для проверки состояния службы, необходимо выполнить предыдущую команду для проверки статуса:

Рисунок 3 Служба успешно запущена

Таблица 1 Перечень ПО с указанием службы в systemd

Исполнение ПО	Тип	Наименование службы
	клиент	ddopcuaclient.service
	сервер	ddopcuaserver.service
DiodelEC60870-104	клиент	dd104client.service
	сервер	dd104server.service
	клиент	ddfileclient.service
	сервер	ddfileserver.service
DiodelEC61850	клиент	DiodIEC61850Client.service
Diddeileo1830	сервер	DiodIEC61850Server.service
DiodoModbus	клиент	diodModBusClient.service
Diodemodbus	сервер	diodModBusServer.service
DiodeEmail	клиент	DiodEmailClient.service
	сервер	DiodEmailServer.service
DiodeSNMP	клиент	DiodSnmp.service

2.2 OC Windows

Управление проверочным экземпляром ПО осуществляется графическими средствами ОС Windows через консоль оснастки services.msc.

Для вызова указанной консоли, необходимо находясь на рабочем столе нажать комбинацию клавиш Win+R и ввести в строку ввода Open название консоли: services.msc

🖅 Run	×
٨	Type the name of a program, folder, document, or Internet resource, and Windows will open it for you.
<u>O</u> pen:	services.msc ~
	OK Cancel <u>B</u> rowse

Рисунок 4 Вызов оснастки Services

Нажать ОК. В открывшемся окне в перечне служб найти экземпляры проверочного ПО согласно таблицы 2.

Таблица 2 Перечень ПО в перечне служб ОС Windows

Исполнение ПО	Тип	Наименование службы
	клиент	IC_ddFILEclient
	сервер	IC_ddFILEserver
	клиент	IC_ddOPCclient
	сервер	IC_ddOPCserver

На примере ниже показано управление программным обеспечением в исполнении DiodeFILE. Управление другими службами из таблицы 2 выполняется аналогично.

Окно оснастки Services представляет собой таблицу. В таблице в столбце Status напротив интересующей службы указано её состояние: если поле пустое – служба остановлена, если в поле указано Running – служба запущена и работает.

Выделить в перечне службу IC_ddFILEclient, вызвать контекстное меню правой кнопкой мыши на названии службы и нажать Start

Services					- 0	×
File Action View	Help					
♦ ♦ □ □	à 🗟 🚺 📷 🕨 🔳 II ID					
Services (Local)	Services (Local)	-				
	IC_ddFILEclient	Name	Description	Status	Startup Type	Log Or ^
		IC_ddFILEclient		1	Manual	Local S
	Start the service	Q IC_ddFILEserver	Start		Manual	Local S
		IC_ddOPCclient	Stop		Manual	.\txhos
		IC_ddOPCserver	Pause		Manual	Local S
		🖏 IKE and AuthIP IPs	Resume	Running	Automatic (T	Local S
		🎇 Infrared monitor s	Restart		Manual	Local S
		🖏 Intel(R) Capability	Restore		Manual	Local S
		Intel(R) Content P	All Tasks >	Running	Automatic (T	Local S
		🥋 Intel(R) Content P	Refrech	Running	Manual	Local S
		🔍 Intel(R) Dynamic /	Kerresit	Running	Automatic	Local S
		🔍 Intel(R) Graphics C	Properties	Running	Automatic	Local S
		🎑 Intel(R) HD Graphi	Halp	Running	Automatic (T	Local S
		🔍 Intel(R) Managem	Tick	Running	Automatic	Local S

Рисунок 5 Выбор службы для управления

Процесс запуска службы сопровождается всплывающим окном. После запуска это окно закроется автоматически.

Service Control	×
Windows is attempting to start the following service on Local Computer	
IC_ddFILEclient	
Close	

Рисунок 6 Запуск службы

После успешного запуска службы её статус изменится на Running.

Рисунок 7 Служба запущена

Действия по остановке службы аналогичны действиям при запуске, но в контекстном меню выбирается команда Stop. Процесс остановки также может сопровождаться всплывающим окном, которое закроется автоматически.

3 Конфигурирование ПО

3.1 Конфигурация DiodeOPCUA

Все необходимые параметры находятся в файле конфигурации **UAclientIC.ini**, расположение которого указано в инструкции по установке ПК ОПТИ ИК.ДИОД. Файл редактируется с помощью встроенного текстового редактора (nano в OC Linux). После внесения изменений, файл необходимо сохранить и закрыть. Для того чтобы изменения вступили в силу, необходимо остановить и запустить службу.

На рисунке 8 отражены 2 секции с параметрами.

```
receiver
address=192.168.100.10
replace
in= &
out=
server
id=1
url1=opc.tcp://10.23.23.10:48011
#usertokentype=certificate
#usertokentype=username
#default value:
#usertokentype=anonymous
#username=user1
#password=/luser1
#secpolicy=Basic256Sha256
#default value:
#secpolicy=none
#mesmode=SignAndEncrypt
#mesmode=Sign
#default value:
#mesmode=None
subscription
id=1
interval=500
items
1;ns=2;s=TEST_SIG.AI_SIGNAL_000
2;ns=2;s=TEST SIG.AI SIGNAL 001
```

Рисунок 8 – Содержимое файла конфигурации для системы с одним источником данных

1 – receiver, секция параметров прокси-компьютера; 2 – server, секция параметров источника данных, содержит подсекции: subscription – параметры получения данных; items – перечень получаемых данных (тегов).

В закомментированной секции представлены способы авторизации и шифрование. Для подключения к серверу с авторизацией по паролю убрать комментарий на строчках с необходимыми данными:

usertokentype=username username=user1 password=user1

Состав параметров источника в секции 2 представлен в таблице 3.

replace	
in=	Замена символов в тегах при передаче на RX (при необходимости)
out=	
convor	Название секции – Сервер.
Server	Секций «server» может быть несколько для разных источников данных.
id=	Уникальный идентификатор источника
	Адрес сервера ОРС UA.
	На следующей строке можно указать дополнительный адрес
url1=	url2= для резервированного источника данных.
	При это важно учитывать, что в таком случае оба резервированных источника
	должны содержать в себе одинаковый набор тегов.
restore=	Включение восстановления данных. Параметры 0,1.
aubaarintian	Название подсекции – Подписка
subscription	В каждой секции «server» своя подсекция «subscription»
: d	Уникальный идентификатор подписки.
iu=	id должен быть уникальным для каждой секции «server»
interval=	Интервал опроса данных в миллисекундах
Парамет	ры тега в подсекции «items», например,

Таолица 5 – Параметры источника в секции 2
--

«1;ns=2;s=GT10_DAI.10MBA11CG101XQ01.PV;1000;1» представлены в таблице 4.

Таблица 4 – Параметры тега в подсекции «items»

itomo	Название подсекции – Объекты (теги)
items	В каждой секции «server» своя подсекция «items»
1	Уникальный идентификатор тега
1	Уникален для всего файла конфигурации
	Идентификатор тега из источника данных
ns= , s= ,	Эти параметры необходимо получить в источнике данных

На рисунке 9 представлен пример файла конфигурации для системы с двумя источниками,

особое вниманием следует уделить на выделенные жирным уникальные идентификаторы.

receiver address=192.168.100.10
server
0 = 1
subscription
id=1
interval=1000
items
1;ns=2;s=GT10_DAI.10MBA10CG101XQ01.PV
2;ns=2;s=GT10_DAI.10MBY10DU050XQ01.PV
3;ns=2;s=GT10_DAI.10MBL11CT902ZQ01.PV
server
Id=2
ull1=0pC.tcp.//10.13.10.51.4640
id-2
interval=1000
items
11;ns=2;s=GT20_DAI.10MBA20CG101XQ01.PV
12;ns=2;s=GT20_DAI.10MBA21CG101XQ01.PV
13;ns=2;s=GT20 DAI.10MBL11CT902ZQ01.PV

Рисунок 9 – Пример файла конфигурации для системы с двумя источниками данных

3.2 Конфигурация DiodelEC60870-104

Настройка протокола МЭК 60870-5-104 заключается в настройке (редактировании) файлов конфигурации dd104client.ini и dd104client.ini, расположение которых указано в инструкции по установке ПК ОПТИ ИК.ДИОД. Файлы редактируется с помощью встроенного текстового редактора (nano в OC Linux). После внесения изменений, файл необходимо сохранить и закрыть. Для того чтобы изменения вступили в силу, необходимо остановить и запустить службу.

receiver address=192.168.100.10 port=46668 server address=213.85.51.75 port=2404

Рисунок 10 – Содержимое файла конфигурации dd104client.ini

Описание параметров файлов конфигурации представлено в таблице 5.

receiver	Название секции. Секция может быть только одна в пределах одного
	конфигурационного файла.
address-	IP адрес однонаправденного интерфейса на приемной стороне. Первый порт
nort-	передачи по однонаправленному интерфейсу, последующие сервера занимают
pon=	следующие порты.
server	Название секции. Количество секций должно соответствовать количеству
	источников данных по данному протоколу.
address=	IP адрес, порт (обычно 2404) и общий адрес (обычно 1) сервера источника
port=	данных.

Для синхронизации и обеспечения отсутствия неправильных данных, GI запрос в сторону источника выполняется автоматически с периодичностью раз в 5 минут. Частота запроса редактированию не подлежит.

```
receiver
port=46668
server
address=10.23.23.200
port=2404
queuesize=5
mode=1
```

Рисунок 11 – Содержимое файла конфигурации dd104server.ini

Описание параметров файла конфигурации dd104server.ini в таблице 6.

receiver	Название секции. Секция может быть только одна в пределах одного		
	конфигурационного файла.		
port=	Первый порт передачи по однонаправленному интерфейсу, последующие		
	сервера занимают следующие порты. Номер порта должен соответствовать		
	порту на стороне ТХ		
0.0 10 / 0.1	Название секции. Количество секций должно соответствовать количеству		
Server	источников данных по данному протоколу.		
oddroco-	IP адрес и порт сервера данных на стороне RX. Для каждого источника на стороне		
audress=	ТХ необходимо предусмотреть свое уникальное сочетание IP-адрес/порт на		
port=	стороне RX.		
queuesize=	Размер буфера данных. Это значение должно быть равно количество тегов		
	помноженное на 2 для корректной работы.		
mode=	Параметр mode может принимать всего 2 значения 0 и 1 :		
	0 - к серверу на RX может подключится только 1 клиент и есть буфер данных		
	1 - к серверу на RX могут подключится несколько клиентов, но буфера данных		
	нет		

Таблица 6 – Пар	аметры файлов	конфигурации	dd104server.ini

Настройка передачи файлов заключается в настройке (редактировании) файла конфигурации ddFILEclient.ini расположение которого указано в инструкции по установке ПК ОПТИ ИК.ДИОД. Файл редактируется с помощью встроенного текстового редактора (nano в OC Linux). После внесения изменений, файл необходимо сохранить и закрыть. Для того чтобы изменения вступили в силу, необходимо остановить и запустить службу.

Файл ddFILEserver.ini. – не требует редактирования.

📙 ddFILE	client.ini 🔀
1	receiver
2	address=192.168.100.10
3	filedir
4	<pre>path=/home/ftpuser/ftp/upload</pre>
5	sendparam
6	speed=40000000
7	deletesentfile=1
8	dontsendafter=24
9	

Необходимые параметры для редактирования:

deletesentfile – удаление файлов после передачи. Параметры 0,1

dontsendafter – не пересылать файлы старше указанного значения в часах. 0 – пересылать всегда.

Настройка протокола МЭК 61850(MMS) заключается в настройке (редактировании) файла конфигурации Config.json, расположение которого указано в инструкции по установке ПК ОПТИ ИК.ДИОД. Файлы редактируется с помощью встроенного текстового редактора (nano в OC Linux). После внесения изменений, файл необходимо сохранить и закрыть. Для того чтобы изменения вступили в силу, необходимо остановить и запустить службу.

Конфигурационные файлы должны быть идентичны на клиенте и сервере IEC61850 (MMS).

При старте клиента, для всех включенных отчетов происходит резервирование не буферизированных отчетов, установка опций «TrgOps», «Options», «BufTm», «IntgPd», активация всех отчётов, если они не были активны, и отправляется команда общего опроса, если общий опрос включен для отчета.

Порядок параметров (data attribute) в файле конфигурации должен соответствовать порядку параметров в опрашиваемых устройствах.

Ненужные логические устройства (logical node), логические узлы (logical node), объекты (data object), наборы данных (data set) и отчеты (report control) требуется удалить из файла конфигурации.

3.4.1 Изменение настроек протокола

Полный перечень параметров для одного устройства описан в таблице 7.

Параметр	Описание параметра	
IpAddress	IPv4 адрес устройства	
Port	Порт устройства	
ModeData	Режим опроса объектов	
ModeDataSet	Режим опроса наборов данных	
ModeReportControl	Режим опроса отчетов	
Password	Пароль для подключения к устройству	
ClientCertificatePath	Путь к сертификату клиента	
ClientCertificatePasswordP ath	Путь к паролю для сертификата клиента	
CACertificatePath	Путь к СА сертификату	
MODEL	Структура устройства	
	MODEL	
DataModelName	Имя модели	
LD	Список логических устройств (logical device)	
LD		
LogicalDeviceName	Имя логического устройства	
LN	Список логических узлов (logical node)	
LN		
LogicalDeviceName	Имя логического узла	
DO	Список объектов (data object)	
DS	Список наборов данных (data set)	

Таблица 7 Перечень параметров в файле Config.json

© 000 «ИНСОФТ», 2024

Формат А4

Параметр	Описание параметра
RC	Список отчетов (report control)
	RC
ReportControlName	Имя отчета
ReportControlld	Ид отчета
IsActive	Активность отчета
IsVisibility	Отображать данный отчет в дереве объектов на RX-host
IsBuffered	Буферизация
DataSetName	Имя набора данных
ConfRef	Ревизия конфигурации
TrgOps	Параметры триггера
Options	Опции
BufTm	Буферное время
IntgPd	Время циклической рассылки
	DC
DataSetName	Имя набора данных
DE	Список элементов набора данных
	DO
DataObjectName	Имя объекта
NumberOfArrayElements	Количество элементов в массиве
DO	Список вложенных объектов (data object)
DA	Список параметров (data attribute)
	DA
DataAttributeName	Имя параметра
NumberOfArrayElements	Количество элементов в массиве
DA	Список вложенных параметров (data attribute)
DataAttributeType	Тип параметра
FunctionalConstraint	Функциональный контейнер
TriggerOptions	Триггер
SignalAddress	Адрес сигнала
Value	Значение по умолчанию

Настройка клиента\сервера SMTP заключается в настройке (редактировании) файла конфигурации appsettings.json, расположение которого указано в инструкции по установке ПК ОПТИ ИК.ДИОД. Файл редактируется с помощью встроенного текстового редактора (nano в OC Linux). После внесения изменений, файл необходимо сохранить и закрыть. Для того чтобы изменения вступили в силу, необходимо остановить и запустить службу.

Конфигурационные файлы должны быть идентичны на клиенте и сервере DiodeEMAIL перечень настроек описан в таблице 8.

Параметр	Описание параметра	
	Logging	
Path	Путь к Log-файлу с именем файла	
Append	Перезаписать Log-файл при перезапуске ПО	
MinLevel	Уровень сообщений для записи в Log-файл	
FileSizeLimitBytes	Размер Log-файла	
MaxRollingFiles	Максимальное количество Log-файлов	
	Settings	
ClientDiod_SmtpServerPort	Порт SMTP сервера без шифрования	
ClientDiod_SmtpServerPortSSL	Порт SMTP сервера с SSL	
ClientDiod_UsernameConnectionSSL	Имя пользователя при работе с SSL	
ClientDiod_PasswordConnectionSSL	Пароль пользователя при работе с SSL	
ClientDiod_SmtpServerPortTLS	Порт SMTP сервера с TLS	
ClientDiod_NameCertificateFile	Путь к файлу сертификата Х.509 с именем файла	
ClientDiod_NameCertificatePasswordFile	Путь к файлу пароля сертификата Х.509 с именем файла	
ClientDiod_MaxMessageSize	Максимальный размер сообщения	
ClientDiod_MaxRetryCount	Максимальное количество повторных попыток, разрешенных для неудачной команды	
ClientDiod_MaxAuthenticationAttempts	Максимальное количество попыток аутентификации при неудачной аутентификации	
ClientDiod_CommandWaitTimeout	Тайм-аут, используемый во время ожидания команды от клиента	
ClientDiod_ProtocolType	Тип протокола для копирования сообщений с почтового ящика	
ClientDiod_Pop3ImapServerIp	Адрес сервера входящей почты для копирования сообщений с почтового ящика	

Таблица 8 Перечень параметров в файле appsettings.json

© ООО «ИНСОФТ», 2024

Параметр

ClientDiod_Pop3ImapServerPort	Порт сервера входящей почты для копирования сообщений с почтового ящика
ClientDiod_UsernameConnectionPop3Im ap	Электронный адрес почты для копирования сообщений с почтового ящика
ClientDiod_PasswordConnectionPop3Im ap	Пароль почты для копирования сообщений с почтового ящика
ClientDiod_DefaultEmailForReplacement	Адрес получателя писем при копировании писем с почтового ящика по умолчанию
ClientDiod_SecureOptions	Уровень безопасности для копирования сообщений с почтового ящика
lpServer	IPv4 адрес для подключения клиента к серверу
PortServer	Порт для подключения клиента к серверу
MaximumNumberRecordsBufferUdp	Максимальное количество сообщений в буфере для отправки от клиента к серверу
SetCountPackages	Количество пакетов, отправляемых при записи в одном цикле
TimeoutSetPackages	Время ожидания между отправкой пакетов в одном цикле
PackageSize	Размер пакета для отправки
ServerDiod_SmtpServerIp	Адрес SMTP сервера для обработки писем с Диода
ServerDiod_SmtpServerPort	Порт SMTP сервера без шифрования для обработки писем с Диода
ServerDiod_SmtpServerPortSSL	Порт SMTP сервера с SSL для обработки писем с Диода
ServerDiod_UsernameConnectionSSL	Имя пользователя (адрес почтового ящика) при работе с SSL
ServerDiod_PasswordConnectionSSL	Пароль пользователя (почтового ящика) при работе с SSL
ServerDiod_SmtpServerPortTLS	Порт SMTP сервера с TLS для обработки писем с Диода
ServerDiod_UsernameConnectionTLS	Имя пользователя (адрес почтового ящика) при работе с TLS
ServerDiod_PasswordConnectionTLS	Пароль пользователя (почтового ящика) при работе с TLS
ServerDiod_CheckCertificateRevocation	Включение проверки отзыва сертификата
ServerDiod_IssuerCertificate	Издатель сертификата (Certificate issuer) SMTP сервера для обработки писем с Диода
ServerDiod_SerialNumberCertificate	Серийный номер сертификата SMTP сервера для обработки писем с Диода
ServerDiod_ThumbprintCertificate	Отпечаток сертификата (Certificate thumbprint) SMTP сервера для обработки писем с Диода
ServerDiod_ServerCertificateValidation	Режим проверки сертификата SMTP сервера для обработки писем с Диода

ИНСОФТ

Описание параметра

Параметр	Описание параметра
ServerDiod_MaxCountSimultaneousConn ections	Количество одновременных подключений к серверу
ServerDiod_MaxCountSendMail	Количество попыток отправки письма при неудачной отправке
ServerDiod_EnableReplaceMailFrom	Включения замены почтового адреса отправителя
ServerDiod_ReplaceMailFrom	Адрес для замены почтового адреса отправителя

3.6 Конфигурация DiodeSNMP

Настройка протокола SNMP заключается в настройке (редактировании) файлов конфигурации ConfigSnmpGet.json, ConfigSnmpSet.json, расположение которых указано в инструкции по установке ПК ОПТИ ИК.ДИОД. Файлы редактируется с помощью встроенного текстового редактора (nano в OC Linux). После внесения изменений, файл необходимо сохранить и закрыть. Для того чтобы изменения вступили в силу, необходимо остановить и запустить службу.

3.6.1 Изменение конфигурационных параметров в файле ConfigSnmpSet.json

Полный перечень параметров описан в таблице 9

Параметр	Описание параметра
Snmplp	IPv4 адрес устройства Rx
SnmpPort	Порт Snmp устройства Rx
SnmpCommunity	Community устройства Rx
BeginningOids	Начальный адрес для формирования списка адресов для записи
SnmpVersionNetSnmp	Версия Snmp для подключения к сторонних систем
SnmpCommunityNetSnmp	Community для сторонних систем v2c
SecureLevelNetSnmp	Уровень аутентификация для сторонних систем v3
SnmpV3LoginNetSnmp	Имя пользователя для сторонних систем v3
SecurityAuthNetSnmp	Протокол безопасности пароля для сторонних систем ∨3
SnmpV3AuthPasswordNetSnmp	Пароль аутентификации для сторонних систем v3
SecurityPrivNetSnmp	Протокол безопасности пароля для сторонних систем ∨3
SnmpV3PrivPasswordNetSnmp	Ключевая фраза безопасности для сторонних систем v3

Таблица 9 Перечень параметров в файле ConfigSnmpSet.json

Рисунок 13 Пример формирования номеров устройств (параметров)

Рисунок 14 Пример добавления нового устройства (параметра)

3.6.2 Конфигурирование файла ConfigSnmpGet.json

Полный перечень параметров для каждого устройства описан в таблице 10

Таблица 10 Перечень	параметров для	устройства в файле	ConfigSnmpGet.json
---------------------	----------------	--------------------	--------------------

Параметр	Описание параметра
Snmplp	IPv4 адрес устройства
SnmpPort	Порт Snmp устройства
SnmpVersion	Версия Snmp
SnmpCommunity	Community устройства v2c
SecureLevel	Уровень аутентификация для сторонних систем v3

Параметр	Описание параметра
SnmpV3Login	Имя пользователя для сторонних систем v3
SecurityAuth	Протокол безопасности пароля устройства v3
SnmpV3AuthPassword	Пароль аутентификации устройства v3
SecurityPriv	Протокол безопасности пароля устройства v3
SnmpV3PrivPassword	Ключевая фраза безопасности устройства v3
Group	Номер группы
Oids	Список параметров для записи

3.7 Конфигурация DiodeModbus

Настройка протокола ModBus TCP(RTU) заключается в настройке (редактировании) файлов конфигурации config.json, appsettings.json расположение которых указано в инструкции по установке ПК ОПТИ ИК.ДИОД. Файлы редактируется с помощью встроенного текстового редактора (nano в OC Linux). После внесения изменений, файл необходимо сохранить и закрыть. Для того чтобы изменения вступили в силу, необходимо остановить и запустить службу.

3.7.1 Изменение настроек протокола

Полный перечень параметров для одного устройства описан в таблице 11

Параметр	Описание параметра	
id	Id устройства	
ip	IPv4 адрес устройства	
port	Порт устройства	
path	Имя последовательного порта RTU устройства	
rtu_ip	IPv4 адрес для устройства RTU на rxhost	
rtu_port	Порт для устройства RTU на rxhost	
slave_id	Slave id RTU устройства	
timeout	Путь к паролю для сертификата клиента	
rc (0x01)		
first_address	Стартовый адрес	
quantity	Количество	
rdi (0x02)		
first_address	Стартовый адрес	
quantity	Количество	
rhr (0x03)		
first_address	Стартовый адрес	
quantity	Количество	
rir (0x04)		
first_address	Стартовый адрес	
quantity	Количество	
	serial_ports	
path	Имя последовательного порта	
baud_rate	Скорость передачи данных	
data_bits	Размер символа	
flow_control	Механизм управления потоком	
parity	Режим проверки четности	
stop_bits	Количество стоп-битов	
receive_timeout	Время ожидания ответа	

Таблица 11 Перечень параметров в файле config.json

3.8 Конфигурации ОРС DA

OPC DA клиент работает на операционной системе Windows в силу применения механизма DCOM.

Настройка протокола OPCDA заключается в настройке (редактировании) файла конфигурации ddOPCclient.ini, расположение которого указано в инструкции по установке ПК ОПТИ ИК.ДИОД. Файл редактируется с помощью встроенного текстового редактора (notepad в OC Windows). После внесения изменений, файл необходимо сохранить и закрыть. Для того чтобы изменения вступили в силу, необходимо остановить и запустить службу.

На Рисунок 15 показан пример файла конфигурации.

#replace #in= & #out= receiver address=192.168.100.10 port=45667 server id=1 ProgID=OPC.T3000 address=127.0.0.1 #HdaProgID=OPC.T3000.HDA #HDAaddress=192.168.159.137 #prefix=Test. #restore=1 group id=1 updaterate=1000 items 1;00AEE01CE012&XQ01;0;HDA/00AEE01CE012&XQ01 2;00AEE02CE003&XQ01

Рисунок 15 Содержимое файла конфигурации

Состав параметров источника представлен в таблице 12.

replace in= out=	Замена символов в тегах при передаче на RX (при необходимости)	
receiver address port	Адрес принимающей ноды, установлен по умолчанию и не изменяется. Так же можно поменять порт для передачи (если необходимо)	
server	Название секции – Сервер. Секций «server» может быть несколько для разных источников данных.	
id=	Уникальный идентификатор источника	
ProgID=	ID сервера ОРС DA	
HdaProgID=	ID сервера OPC HDA (при наличии опции к восстановлению исторических данных)	
address=	IP адрес сервера-источника	
HDAaddress=	Адрес ОРС HDA сервера (если отличается от ОРС DA)	
prefix=	Префикс добавляется к имени тега (при необходимости)	

Таблица 12 – Параметры источника

restore=	Опция восстановления (дозапроса) исторических данных после прерывания связи txbost с сервером-источником
	"1" - включено
	"0" – отключено
group	Название подсекции – Группа подписки
	Каждая секция «server» содержит от одной до нескольких подсекций «group»
id=	Уникальный идентификатор Группы подписки.
	id группы должен быть уникальным для каждой секции «server»
updaterate =	Интервал опроса данных в миллисекундах, 0-минимальный возможный интервал,
	устанавливаемой системой самостоятельно
items	Название подсекции – Объекты (теги)
	В каждой секции «group» своя подсекция «items»

Параметры тега в подсекции «items», например, «1; 00AEE01CE012&XQ01;0;HDA/00AEE01CE012&XQ01» представлены в таблице 13.

Таблица 13 – Параметры тега в подсекции «items»

1	Уникальный идентификатор тега
	Уникален для всего файла конфигурации
	имя тега OPC DA; тип данных тега (необязательный
	параметр); имя тега ОРС HDA (если отличается от
00AEE01CE012&XQ010;HDA/00AEE01CE012&XQ01	DA) (необязательный параметр). При настройке
	тега ОРС HDA обязательно указывать тип данных
	(если неизвестен, ставим 0)

ΗΟΟΦΤ

Конфигурация версии для Windows выполняется аналогично версии для Linux (см. п. 3.3) Настройка передачи файлов заключается в настройке (редактировании) файла конфигурации ddFILEclient.ini расположение которого указано в инструкции по установке ПК ОПТИ ИК.ДИОД. Файл редактируется с помощью встроенного текстового редактора (notepad в ОС Windows). После внесения изменений, файл необходимо сохранить и закрыть. Для того чтобы изменения вступили в силу, необходимо остановить и запустить службу.

Файл ddFILEserver.ini. – не требует редактирования.

📙 ddFILE	client.ini 🔀
1	receiver
2	address=192.168.100.10
3	filedir
4	<pre>path=/home/ftpuser/ftp/upload</pre>
5	sendparam
6	speed=40000000
7	deletesentfile=1
8	dontsendafter=24
9	

Необходимые параметры для редактирования:

deletesentfile – удаление файлов после передачи. Параметры 0,1

dontsendafter – не пересылать файлы старше указанного значения в часах. 0 – пересылать всегда.

